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This report is a summary of work done under Grant NAG1-946 for the period 19
December 1988 through 15 August 1992. Most of the technical work is described
in the papers produced, including the NASA Contractor Report 4393 - 'Optimal
Control Problems with Switching Points'. In the following pages we present a list
of the papers along with a brief abstract. The technical work during the last
months of the grant has not yet been submitted for publication so we present a
summary of that work in an Appendix.
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Department.

Pangiotas Tsiotras, Ph.D. student, Aerospace and Ocean Engineering
Department.

Diane DeWalt Smith, Ph.D. student, Aerospace and Ocean Engineering
Department.

Marwan Bikdash,

William Waldron,
Department.

Ph.D. student, Electrical Engineering Department.

Ph.D. student, Aerospace and Ocean Engineering



Papers Produced

H. Seywald and E.M. Cliff, 'Optimal Rocket-Powered Ascent Study', Proc. of the
American Control Conference, Pittsburgh, PA, June 1989, pp. 2026-2031; also J=
Guidance Control and Dynamics, to appear.

The Goddard Problem is that of maximizing the final altitude for a
vertically ascending, rocket-powered vehicle under the influence of an
inverse square gravitational field and aerodynamic drag. The present
paper is concerned with the effect of two additional constraints; a
dynamic pressure limit (qmax) and a specified time of flight (tf). Nine
different switching structures involving zero-thrust (coasting) arcs, full-
thrust arcs, singular-thrust (sustaining) arcs and state-constrained arcs
are obtained for prescribed values of the parameters qmax and tf.
Finally, a comparison is given between the optimal thrust program and a
simple intuitive feedback law.

E.M. Cliff, 'A Singular Perturbation Approach to Pitch-Loop Design', Proc. of the
American Control Conference, San Diego, CA, May 1990, pp. 1819-1823

Singular perturbation ideas are used to design a pitch-loop controller for
a thrusting vehicle. The main feature of this approach is that the inner-
loop design is based on a performance criterion that is consistent with
the minimum-fuel index that was used in shaping the trajectory. The
inner-loop design can be approximated by a linear-quadratic problem so
that the resulting quadratic index is meaningful for fuel-efficient
operation. The quadratic index that results is non-intuitive and features a
control-state weighting term and zero-weight on the state itself. We
define a coupling parameter that indicates when the state dynamics can
be successfully separated into 'slow' and 'fast' categories.

H. Seywald, 'Optimal Control Problems with Switching Points', Ph.D.
Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA
July 1990. (also NASA CR-4393)

H. Seywald, R.R. Kumar and E.M. Cliff, 'A New Proof of the Jacobi Necessary
Condition', Proc. of the American Control Conference, Boston, MA, June 1991;
also J. Guidance Control and Dynamics, to appear.

Jacobi's necessary condition states that a minimizing extremal does not
contain any conjugate points. This result has practical value because it
enables one to discard any extremals that fail the conjugate point test.
While the available proofs establish the theorem under the hypothesis
that the test extremal is smooth, many applications give rise to non-
smooth extremals. In this paper we present a proof that is valid for the
case of extremals with corners.



H. Seywald and E.M. Cliff, 'A Feedback Control System for the Advanced
Launch System', Proc. AIAA Guidance, Navigation and Control Conf., New
Orleans, LA, August 1991, pp. 172-181.

A robust feedback algorithm is presented for near minimum-fuel ascent
of a two stage vehicle operating in a vertical plane. The approach is
based on neighboring optimal control ideas but employs feedback gains
determined by finite differences applied to a family of extremals.
Performance and robustness of the feedback law are found to be
excellent.

H. Seywald, E.M. Cliff and K.-H. Well, 'Range Optimization for a Supersonic
Aircraft', Proc. AIAA Guidance, Navigation and Control Conf., New Orleans, LA,
August 1991, p 967-974.

Range-optimal trajectories for an aircraft flying in the vertical plane are
determined form Pontryagin's Minimum Principle. Controls are the load
factor, which appears nonlinearly in the model and the throttle, which
appears only linearly. The controls are subject to fixed bounds and the
state-inequality restricting the dynamic pressure is also imposed. The
solutions contain state-constrained arcs and along these the controls are
sometimes singular. A total of six different switching structures is found,
depending on the value of the load-factor bound.

H. Seywald, 'Optimal Control Problems with Switching Points', NASA Contractor
Report 4393, September 1991.

A brief discussion of existing optimality conditions is given and a
numerical approach for solving the multipoint boundary value problems
associated with the first-order optimality conditions is presented. Two
realistic aerospace optimization problems are treated explicitly, these are
altitude maximization for a sounding rocket (the Goddard Problem) in the
presence of a dynamic pressure limit, and the range optimization for a
supersonic aircraft in vertical plane flight, also in the presence of a
dynamics pressure limit. An extension of the Generalized Legendre
Clebsch condition to the case of sin.gular control along a state/control
constrained arc is presented and is applied to the aircraft range
optimization problem.



Appendix

Optimal Ascent with Pitch Dynamics

by

William Waldron

Abstract

Optimal ascent paths for rocket-powered vehicles are commonly studied
using point-mass models. In these formulations important gust-load
constraints must be imposed in approximate form as q (dynamic-
pressure) or q-o_ bounds. Thus, it is of interest to study these paths with
more complete rigid-body models. In this section we begin with a review
of the optimal ascent problem in point-mass approximation. The analysis
is then extended to include pitch dynamics in boundary-layer
approximation. The present effort includes the zeroth-order outer
solution wherein the pitch dynamics are equilibrated and treated as
algebraic equality constraints in the point-mass model. Future work will
extend this to include the q-(z dynamics in boundary-layer approximation
and to compare these to numerical solutions with a full pitch-plane rigid
body model.



Point Mass Model:

Mathematical Framework:

Equations of Motion

In order to analyze the trajectory of our launch vehicle we express our

system by the mathematical model;

k = f(x,u) x T = (r,{,V,y,m)

where

and

U T =(1_)

r = distance from center of earth to vehicle (radius)

= downrange angle

V = velocity of the vehicle

y = flight path angle of the vehicle
m = vehicle mass

= engine deflection with respect to body.

See Figure 1 for a depiction of these states variables.

The equations of motion are;

f = V. siny

V" COS y4,-

T. cos _ - D
V = - g.siny

m

Tsin +L(V- + . -COSy
t m.V

where the gravitational acceleration is modeled as g = go" .

These equations which are in dimensional form are often difficult to work

with numerically. To alleviate some of the difficulties the equations are scaled
and non-dimensionalized. This results in all the state variables having values

near unity. The following scaling factors are used;



scale length: F= re earth radius

scale mass: _- = m0 initial vehicle mass

scale acceleration: _ = go gravitational acceleration at surface
These scale factors lead to the following additional scale factors;

scale time:

scale force: { = m .r

F
scale velocity: q = =.

t

If we now define our new non-dimensional variables as follows:

F r _ T
F f

[5 D=_-
f

_=V _ L
7 f

C

m

Note that the variables that represent angular measurements are not modified.

The equations of motion can now be written in non-dimensional form. For

reasons of visual clarity the "^" notation will be dropped from the non-
dimensional variables. From this point on all variables will be non-dimensional

unless otherwise noted. Our non-dimensional equations of motion are,

= V. siny

V- cos y¢-

v=T'c°s_-D siny
m r 2



CL(M, _) = CLo(M)" (a •_-)

CL,(M ) = CI(M) + C2(M) + C3(M)

c,(a) = C,0 + C,,- tan-l(C,2 "a- C,3)

C, (M) = C,1" e (c=(M-c,'),)

C3(M) = C30 + C3," tan-'(C3, .M- C,,)

with function coefficients given in Tables 1 and 2.
In order to simplify the point mass model, the angle of attack dependence

has been removed by holding e_=0 throughout the trajectory. It has been shown

for this vehicle that if the angle of attack is varied between plus and minus ten
degrees the variation in all aerodynamic forces constitutes less than 1% of the

total force acting on the vehicle.[2] A plot of the drag coefficient, CD, vs. Mach
number at (z=0 is shown in Figure 2.

Atmospheric Model
The atmospheric model us such that the speed of sound, a[m/s], and

density, p[kg/m3], are given by the following relations;

a[%]= ao.[c o +h.c, +h2.c2 +h.c 3 +h.c' +h-c s +h.c 6]

F /
p[kg//m, ] = 5 3 • e L J

where h is the altitude in kilometers and the function coefficients are given in
Tables 4 and 5.

Optimization Approach:

Problem Statement
The task at hand is to launch the vehicle into an orbit with a specified

semi-major axis and orbit eccentricity using the least amount of fuel. These
terminal conditions can be defined by the following constraints.

2 V(t,)2 1 0
_P' r(tf) a

_2 = cos2 Y(t,)'[V(t,) 4 -r(t,)' - 2.V(t,) 2 .r(t,)] + 1-e 2 = 0

where a is the desired semi-mafor axis and e is the desired orbit eccentricity.
In addition to these constraints on the state variables at final time, there

are also constraints on the mass at staging;



'1'3 = m(t_)-m_, = 0

'1'4 = (m_ - Am,)- m(t:) = 0

where m_ is the desired vehicle mass before staging, Am, is the desired change

in vehicle mass at staging, m(t_,) is the vehicle mass before staging, and m(t;) is

the vehicle mass after staging. At staging the aerodynamics of the vehicle

change, but the dynamic pressure has dropped off significantly resulting in this
change having negligible effect on the trajectory. For this reason the

aerodynamic model does not change at staging which results in a simplification
of the simulation.

We can now define our cost or performance index, J, as;

J=-re(t,).

Hamiltonian

To solve the optimal control problem we shall employ the Minimum

Principle. Accordingly we define the usual variational Hamiltonian.

H= xT'f(x'u)=X"'[V'siny]+X_'[V'cosy']+Xv'[ Tc°s_-Dm sinYlr2

+X
Y

-T.sins+L

m.V +(vV!r)COS,l+,m[_]
Costate Differential EQuations

The differential equations for the costates are given by the relation,

_._= aH
ax_

For our problem this results in the following differential equations for the
costates:

_r:_,IVCOSy]r2--_V[Tc°s_-°rm_2s,nY]r3
s'n +Lr/v 2/ 1m-V _ V-r 3 "c°sy



[LvTs,n_+L(_ 1) ]-Xy- rn;X/ m-V 2 , + V2.r_ .cos,(

Y :___vcos_]+_Ivsiny]+_vrc°sy1r Lr2J

+Xy-[(V V!r2).siny ]

_m:_V[Tc°s_-°]_+_YITsin_+L]m2V
Control Calculation

Our control, u(t), can be determined by looking for a u(t) that minimizes

the Hamiltonian.

u(t).

0H
We can find such a control by setting -- = 0 and solving for

oqu

_)H OH T-sins T-coss
Xv • + Xy • = 0

_u _)_ m m-V

COS s
Xv •sins = X

V

tan s Xy/,_'

Xv

This gives our control, u(t)=E(t), as a function of the costates Xyand Xv as well as
the state variable V. There is still a quadrant resolution problem to be solved. In

order to resolve the ambiguity we require that 02H--_0.
O_S2

expression:

This leads to the

sin_

-X v cos s - ;%--_- _ 0.

Using this expression the correct quadrant for our control, _, is specified.



Terminal Conditions
We now need to determine the terminal conditions on our costates. To do

so we define a function, _, made up of our cost function and the dot product of

constant multipliers, v_, and our terminal and staging conditions tlh.

:14) = j+ T ._ = -m(tf) + v,-

+'u 2 -[cos 2 z(t,)-[V(tf) 4 •r(t,)=- 2 • V(tf) 2 "r(t,)] + 1- e =]

+_3-[m(t[,) - m:]+ _4- [(m_, - Am,)- m(t: )]

The boundary conditions on our costates at final time are determined by the

relation; Xi(tf)= Our terminal conditions on the costates become

I21 icos2  tf I2v t, 42v t, 211
x,(t,)=0

Xv (t,) = v,-[-2 .V(t,)] + _,-[cos' y (tf)-[4-V(t,) _ • r(tf)'-4. V(t,). r(t,)]]

X (tf)= _,-[-2-cosy(tf)-siny(t,).[V(tf) 4 .r(tf)'- 2-V(t,)' .r(t,)]]

X,,(t,) = -1

In addition, since our final time is unspecified: H(t¢) = 0.

Staginq Conditions

When the launch vehicle reaches a specified value of mass, m_, staging

occurs. During staging, which is assumed to occur instantaneously in our

model, the vehicle mass is reduced by a specified value of &m,. In addition to

the change in the state variable, m, the corresponding costate also is
discontinuous. The values of our costate both before and after staging are given

by the following relations [3];



0(i)

which leads to the conditions;

_,m(t:) = 1J3

_m (t:) = 1J 4 •

Since both t 5 and "u4 are arbitrary, these two relations can be reduced to

Xm(t:)-_,m(ts-)=A_,m(t ,)

where AXm(t,) is an unknown to be determined. We also know that the value of

the Hamiltonian, H, does not change during staging.

H(t:)- H(t_,) = 0

Multi-Point Boundary Value Problem

Our problem is now a multi-point boundary value problem. Our known

values at initial time, t0=0, are

r(o)=r0

v(o)=Vo

y(o)=yo

m(0) = m0

with re(t:)= rn(t_)+ Am at staging.

The above problem needs to be solved using the state and costate
differential equations for the following nine unknowns,

Xr(0), X_(0), Xv(0 ), Xy (0), Xm(0), t,, AXm(t,), th, tJ2, to meet the following nine

conditions.

(I)

(2)

(3)

(4)

X,(t,) =-_, r(t,)2 v2 Y

X,(t,) = 0

Xv(t,) = v, "[-2" V(t,)] + v, "[cos' y(t,)" [4" V(t,) 3 •r(t,)'- 4" V(t,). r(t,)]]

k (t,)= t_, .[-2 "cosy (t,).siny(t,)'[V(t,) 4 .r(t,)' - 2. V(t,) 2 •r(t,)]]



2 V(tf) 2-1 =0
(7) roe) a

(8)

(9) H(tr)= 0.

cos2y(tr)'[V(t_)4"r(tf) 2-2-V(tr)2-r(t_)]+l-e 2 =0

Point Mass Solution

The above problem was solved using Newton's method to find the nine

unknowns. The solution converges rapidly once the initial guess for the

unknowns are sufficiently close to the solution. The resulting control history, _(t)

vs. time, can be seen in Figure 3. Time histories of the state and costate

variables can be found in Figures 4 - 10.

Pitch Plane Model:

Mathematical Framework:

Equations of Motion

As before, in order to analyze the trajectory of our launch vehicle we

express our system by a mathematical model;

k = f(x,y,u)

6_' = g(x, y, u)

x t = (r,{,V,y,m)

yT = (0, q)

ut
Our first set of state variables, x, are the same as in the point mass model and

our new state variables, y, are the variables necessary to model the pitch plane.

0 = angular position of vehicle w.r.t local horizontal

q = angular rate of vehicle in pitch plane

The equations of motion for the pitch plane model are;

t = V. siny

(_= V.cosy
r

T.cos(O-y+E)-D siny
V =

m r 2



t

T" sin(O- y + _)+ L

m-V (v II+ r V[r2 .cosy

m T.c
C

60 = q

M-T-/.sin_
6q=

Iyy

Aerodynamic Model

The pitch plane model necessitates the addition of pitching moment data

into our model. The pitching moment about the center of mass is given as

M = _.S-c-C M.

The moment coefficient is a function of Mach number and angle of attack and is

surface fit by the relation;

CM(M, a) = L(M, _) + E(M,a)

L(M, co)= L, .M. (a. _-)+ L 2 •(o_. _-)+ L, "M+L,

E(M, c_) = (E 1 "(o." _-) + E2).e (""(M))

arg(M) =-/(M - M°)'(M' -tan-'(M2co "(M - M°))/=)/2

Plots of the surface fitted aerodynamic coefficients C D, C L, and C M can be seen
in Figures 11, 12, and 13.

Pitch Moment of Inertia

The pitch moment of inertia for the launch vehicle is varied linearly as a
function of vehicle mass.

Reduced Order Model:

EQuilibrium Constraints

In order to ease the transition from the point mass model to a pitch plane

model we will first look at a reduced order pitch plane model. This is

implimented by letting our time scale variable, 6, go to zero in the above model.

This implies that g(x,y,u) = 0 and our pitch plane variables [ and q become

"control like". The resulting pitch plane constraints are;

q--0



M-T./-sin_
=0.

lyy

Hamiltorlian

We again employ the Minimum Principle and define our variational
Hamiltonian.

. _,,vs,n,,+_.Ivc°s'1=• • _ +,v.ITo°s'°_;+"-°s'n'l,,
+X

T.sin(e- y + E) + L ('_V• m-V +_r 1 .)-cosy]+ X_- [--_-]V-r 2

[M- T'/sin_ 1+% "[q]+ Vq" In

Costate Differential Equations

The costate differential equations are;

_r=X .[V'cosy]_Xv [T,'cos(0-Y+_)-Drr 2 " m- "

-X
Y

2siny
r 3 1

"[ Tr "Sin(0- Y + _)+Lrm-_/- I v_- V.r 32 )c°sy I

Lv T.sin(e-y + E)+L-X,- m:_/ m-V 2 +(_+ 1v2 :r2)'c°s¥ 1



T'cos(0- y + _)- L_ (#V+xy. m._" *,r / I f",:l1 .siny -_q-
V.r 2

E j_'r_= Xv T'c°S(0mY + E)-D + Xy L m2V

I M- T'.f'sin_ 1_1

Control Calculation

We again set the derivative of the Hamiltonian with respect to each
control to zero.

He =Xv.-T'sin(e-Y+E)-O 0 +X T-cos(0-y+_)+L o +vq---=M° 0
. m _ m-V Iw

Hq = "uo= 0

H, = Xv.-T'sin(0-Y +_) +xy.T'c°s(0-Y +_)_vq.T-,P.cos_ =0
m m-V In

The above three equations along with the two pitch equilibrium equations

need to be solved for the five unknowns; q, 0, s, vq, and _0. It can easily be

seen that the variables q and _0 are equal to zero and decouple from the rest of

the system. Therefore the problem of solving for our control reduces to a
system of three equations and three unknowns.

M-T.e.sin_
=0.

lyy

H0=Xv.-T.sin(0-y+E)-D 0+X T-cos(0-y+_)+L0 +vq'--=Me 0
m _ m-V In



H_ Xv -T.sin(O-y+_) T.cos(e-y+_) T.#.cos_= • +Xy -_Jq =0
m m-V I_

The above equations are nonlinear and must be solved iteratively for the

unknowns throughout the trajectory.

Multi-Point Boundary Value problem

Since the reduced order model does not introduce any new state

variables, 0 and q are treated as controls, the initial, staging, and terminal

conditions are the same as in the point mass boundary value problem.

Shooting Point Technique

With added complexity of the pitch plane model numerical difficulties start
to arise. These difficulties are a result of integrating the costate differential

equations which are unstable. To work around the instabilities the intervals both

before and after staging are broken down into several smaller intervals. The

idea is to have the intervals small enough so that the unstable costates do not

"blow up" before the end of the interval is reached.

At the beginning of the next the costates are reset to new initial values

and the integration is continued. After the integration is complete for the entire

trajectory the initial values for each interval are adjusted in an attempt to match
end conditions on each interval as well as the boundary conditions for the entire

problem. This technique is useful in alleviating some of the numerical

instabilities but results in a larger Newton problem with more unknowns.

Reduced Order Pitch Plane Solution

The control history, _(t) vs. time, and angle of attack history, a(t) vs. time,

for the optimal trajectory can be found in Figures 14 and 15 respectively. Time
histories of the state and costate variables can be found in Figures 16 - 22.



Tables:

Cn

Gin

Cll

C17

013

C_n

021

C72

0.187

0.5

0.3410828
10.0

8.5

0.43

0.28

-1.15
0.75

kin

kll

k17

kl._

IS1
IS,

0.001075

0.5

0.508753

-0.5

-1.5
0.00015

0.00055

-1.5

2.5

Table 1: Coefficients for CDfunctionalization

Cl0

Cll

C17

C13

621

c?_
C_r_

Grin

Cr_l

037

C3t_

Table 2:

0.05119

0.0050695

1.2

4.32

-0.O02
-1.7

1.75

-0.005

O.0040915

-0.25
-2.75

Coefficients for CL functionalization

L 1

L2
L._
L,

E1

E7

Mn

M1
M?
CO

-0.27101094838599 x 10 .3

+0.11682570862606 x 10 -1

+0.16851032948609 x 10 .2
+0.35751730216124 x 10 -2

+0.31816920579938 x 10.2

+0.35019268019610 x 10-1

+0.13713067220255 x 10 ÷1

1.5
1.0x 10+e

+0.84593773937827

Table 3: Coefficients for CMfunctionalization



a o

Ca

Cl

C7

C3

C4

C5
C8

+332.9494352

+1.02207711387
-0.262500934305 X 10 1

+0.142474099963 x lO 2

-0.298404907679 X 104

+0.274897035390 X 104

-0.109152741878 xlO 4

+0.147617851753 xlO 11

Table 4: Coefficients for speed of sound model

b 1

b_

b._

al

a7

a_

a4

+1.0228055

+0.12122693

+1.225

-3.48643241 x 10.2

+3.50991865 x 10-_
-8.33000535 x 10 -s

+1.15219733 x 104

Table 5: Coefficients for density model
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Figure 1" State Variable Depiction
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Figure I 5: Pitch Moment Coefficient Surfoce Plot
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Radius History for Reduced Pitch Plane Solution
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Figure 1 7: Downrange Angle for Reduced Pitch Plane Solution
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Velocity History for Reduced Pitch Plane Solution
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Figure 20: Vehicle Mass History for Reduced Pitch Plane Solution
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